

Challenges in Modelling of Passive Heat Removal Systems for Small and Micro Modular Reactors

Mihael Boštjan Končar*, Jörg Starflinger, Mihael Sekavčnik, Mitja Uršič

Small Modular Reactors: The Key to a Decarbonized Energy Future

Decarbonization of Diverse Energy Sectors:

- I. Load-following Operation → **Replacing Coal & Gas Plants**
- II. High-temperature Heat Supply \rightarrow Industrial Applications
- III. Synthetic Fuels \rightarrow **Transport**

Use of Advanced Nuclear Fuels \rightarrow Entering Circular Economy

New Business Models → Industry Investors & Sector Coupling

Advantages of Implementing Passive Safety Systems in SMRs

- Integral RCS design
- ii. Lower core power capacity
- iii. Large surface to volume ratio
- iv. Large primary coolant inventory per MW_{th}
- v. Smaller reactor core power density
- vi. Large secondary coolant inventory
- vii. Taller reactor pressure vessel

- Reduced accidents initiators
- Lower decay heat Π.
- Easier heat removal \rightarrow single phase flow iii.
- iv. Large heat sink; Enhanced buoyancy; Slow transient
- Larger thermal-hydraulics margin \rightarrow Long term HR V.
- vi. Passive heat removal and containment cooling
- vii. Enhanced heat removal via natural circulation

University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia; *Corresponding author: MihaelBostjan.Koncar@fs.uni-lj.si | fs.uni-lj.si

回帰回

The authors gratefully acknowledge financial support provided by German Academic Exchange Service (DAAD), research grant 57693451. The Jožef Stefan Institute author acknowledge the financial support from the Slovenian Research and Innovation Agency (research core funding No. P2-0026).